
arc.ubc.ca

Introduction to HPC

Presented by: Jacob Boschee and Venkat Mahadevan 



arc.ubc.ca

Summary of Topics

1. Course Prerequisites and Interactive Examples
2. Allocations

3. Scheduling

4. Software Modules

5. Storage



arc.ubc.ca

Prerequisites

• Familiarity with command line shells

• Connecting to a system via SSH

• Editing files in terminal



arc.ubc.ca

Allocations

• Basic structure of accounting and assigning resources

• Often comprised of multiple members of a research team

• Groups usage of a system together to allow easier collaboration between members

• Can be used to organize system usage for reporting metrics



arc.ubc.ca

Allocations – Sharing Resources 

• All members of an allocation have equal usage of the same resources

•

• Many systems have reporting systems to check usage

•

• Communication between allocation members can be key to efficiently sharing



arc.ubc.ca

Allocations - Lifecycles

• Most allocations on HPC systems have a term

• Often terms can be extended by reapplication

• Users and allocation managers should have an end of term plan.

•

• Similarly plans should be made for when researchers leave the allocation



arc.ubc.ca

Scheduling

• Backbone of an HPC system

• Resources are allocated to jobs and jobs are run non-interactively from a queue

• Works to make the most efficient and fairly distributed use of available resources

• Multiple resource schedulers are available with their own unique interfaces

•

•



arc.ubc.ca

Scheduling – Job Submission

• Jobs are submitted to a queue for execution

• Users can view their own active and pending jobs

• Variations depending on type of scheduler used

• [Example of Job submission Demo]



arc.ubc.ca

Scheduling – Resource Requests

• Jobs must contain instructions for the scheduler

•

• Systems often place limitations on the maximum duration and number of resources requested

• Requesting resources does not necessarily mean your software will utilize them

•



arc.ubc.ca

Scheduling - Fairshare

• To balance use of the system the scheduler can assign a ranking to allocations

• This allows users who have less use of a system to more rapidly access resources when there is 

contention

• The ranking is determined based on previously requested resources

•

• As this is often balanced across allocations ensure you speak with other members about your 

usage if it will impact their ability to start jobs.



arc.ubc.ca

Software Modules

• Modules are configuration files which modify your software environment.

• The purpose is to make pre-installed software easily available to the user.

• Module files contain instructions to modify environment variables such as PATH and 

LD_LIBRARY_PATH to allow various installed software to run correctly.



arc.ubc.ca

Software Modules

• On the Sockeye HPC, for example, many kinds of software packages are provided.

• Programming languages: C/C++ compilers, Fortran, Java, Matlab

• Parallel libraries: OpenMPI, OpenMP

• GPU development: CUDA

• Many others: https://arc.ubc.ca/list-available-software-sockeye

https://arc.ubc.ca/list-available-software-sockeye


arc.ubc.ca

Software Modules – Loading Environments

• On Sockeye, there are a couple of different software environments which load a pre-determined 

set of modules.

• default-environment: current environment loaded by default.

• Sockeye_2021_Software: new environment, will become the default upon completion of 

testing.



arc.ubc.ca

Module Hierarchy

Software Environment

Compiler 

Software Packages MPI Implementation 

Software Packages 



arc.ubc.ca

Software Modules - Commands

• module avail <name>  list available modules

• module spider <name>  provide detailed info. about modules and versions

• module list list loaded modules

• module load <name>  load the module

• module unload <name>  unload the module

• module show <name>  show the detailed commands



arc.ubc.ca

Software Modules – Commands

• Modules must be loaded before a job is submitted.

• Or they can be loaded in the submission script.

• Pre-requisite modules for a module will also be loaded automatically.

• It is not advised to load modules in your .bashrc; load them as required.



Exercises – list available modules using 
“module avail”



Exercises – show currently loaded modules 
using “module list”



Exercises – search for versions of gcc



Exercises – load the gcc compiler “module 
load gcc/9.1.0”



Exercises – list available modules



Exercises – load python/3.7.3



Bonus – save and restore your loaded 
modules from a collection 



arc.ubc.ca

Storage - Home

• Location for personal files and basic development work

• Should not be used to store active input or output from jobs

• For performance reasons some systems (such as Sockeye) do not allow writing from queued 

jobs

• Generally a smaller limitation on size than other allocation directories



arc.ubc.ca

Storage - Project

• Best location for software installed to be used by software run via the scheduler.

• Input files that do not need to be written to

• Storing final results from workflows.

• Shared among all users within an allocation

• For performance reasons some systems (such as Sockeye) do not allow writing from queued 

jobs



arc.ubc.ca

Storage - Scratch

• Generally the fastest shared storage system on an HPC system

• Primary location for files that need to be written by HPC jobs and input files that are repeatedly 

read during execution by software.

• As a high turnover file system users are recommended against long-term storage of data in 

scratch.

•

• Users are encouraged to move completed outputs to another location on the system once the 

work is completed



arc.ubc.ca

Storage – Local Scratch/Temporary Directories

• For workflows that write many files that are only necessary during the execution

• Some workflows have a very large number of output files that may not be suitable to write to 

scratch

• Storage space only exists as long as the job is still executing. Upon completion all data in the 

location is destroyed

• Tends to be the best performance location to write on the system but will require additional 

steps to ensure data is preserved



arc.ubc.ca



arc.ubc.ca

email: arc.info@ubc.ca


